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Poly-substituted naphthalenes were synthesized via a Pd-catalyzed cyclization of modified Baylis–
Hillman adducts having an o-bromophenyl acetonitrile moiety at the secondary position, in reasonable
yields. The reaction involved a sequential 6-endo Heck reaction and an aerobic oxidation process.
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Chemical transformations of Baylis–Hillman adducts have
received much attention during the last two decades.1–3 Various
cyclic and acyclic compounds have been prepared by various
chemical transformations from Baylis–Hillman adducts.1–3

Although Pd-catalyzed chemical transformations of modified
Baylis–Hillman adducts started very recently, they have provided
many interesting carbo- and heterocyclic compounds.2,3

Recently, we reported a Pd-catalyzed synthesis of tetracyclic
indeno[1,2-a]indanes from modified Baylis–Hillman adducts, as
shown in Scheme 1.3a In the reaction, indeno[1,2-a]indane was
formed as the major product via a Pd-catalyzed 5-exo-trig cycliza-
tion and aryl C–H activation when the EWG is an ester group
(Eq. 1). When the EWG is a nitrile, carbopalladation occurred in a
6-endo mode to provide a naphthalene derivative exclusively
(Eq. 2). The selectivity between 5-exo and 6-endo modes was
explained based on the change of conformations according to the
bulkiness of OTBS moiety and EWG.3a,4 Based on our previous
results we expected that if we replace the bulky OTBS to a small
nitrile group the proportion of 6-endo carbopalladation would
increase irrespective of the size of EWG,3a,4 and we could obtain
poly-substituted naphthalenes5 as shown in Scheme 1 (Eq. 3).

Thus we decided to examine the Pd-catalyzed cyclizations of
modified Baylis–Hillman adducts 3. The starting materials 3a–f
were prepared by the reactions of cinnamyl bromides 1a–e3a,6
ll rights reserved.

: +82 62 530 3389.
and 2-bromoaryl acetonitriles 2 in the presence of K2CO3 via the
corresponding DABCO salts of 1a–e, in good to moderate yields
(Table 2), as reported.7 (Scheme 2).

The reactions of 3a under various conditions were examined,
and we observed the formation of four compounds 4a, 5a, 6a,
and 7a, in variable yields as shown in Table 1.8 When we applied
the conditions of Eq. 1 (Scheme 1),3a the starting material 3a was
decomposed completely at 110 �C. Thus we examined the reaction
at slightly lower temperature (90 �C, entry 1); however, 4a was iso-
lated in low yield (22%) along with a indeno[1,2-a]indane 6a (11%).
The use of K2CO3 (entry 2) and tetrabutylammonium bromide (en-
try 3) increased the yield of 4a. Although the yield of 4a was mod-
erate (44–66%) we found that 6-endo carbopalladation is a
preferred pathway as expected. When the reaction was performed
in toluene (entry 4) the yield of 4a was reasonable (64%) although a
somewhat longer reaction time (5 h) was required. Finally, the
optimum condition was found to be the one using TBAB in toluene
(entry 5) in respects of both the yield of 4a and the selectivity of
products (4a/5a + 6a + 7a). It is interesting to note that the use of
Et3N as a base produced 7a as the major product (entry 6). Under
the influence of such a weak base (Et3N), further oxidation of 7a
(or 5a) at the benzylic position to ketone9 was not observed as in
our previous report.3b

The mechanism for the formation of 4a–7a could be postulated,
as shown in Scheme 3. The 6-endo carbopalladation of the arylpal-
ladium intermediate (I) to (II) and a following b-H elimination
produced the dihydronaphthalene derivative 5a. Aerobic oxidation
of 5a afforded naphthalene 4a.3b The 5-exo carbopalladation of (I)
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Table 1
Optimization of reaction conditions of 3aa

3a

a7a6a5a4

conditions NC

Ph
COOMe COOMe

Ph

O

Ph

NCNC H

COOMe

+ ++

Entry Conditions 4a (%)b 5a (%)bc 6a (%)b 7a (%)b,c

1 PPh3 (10 mol %), Cs2CO3 (2.0 equiv), DMF, 90 �C, 30 min 22 0 11 0
2 PPh3 (10 mol %), K2CO3 (2.0 equiv), DMF, 90 �C, 30 min 66 0 6 0
3 TBAB (1.0 mol %), K2CO3 (2.0 equiv), DMF, 90 �C, 30 min 44 0 5 0
4 PPh3 (10 mol %), K2CO3 (2.0 equiv), toluene, reflux, 5 h 64 2 5 0

5 TBAB (1.0 mol %), K2CO3 (2.0 equiv), toluene, reflux, 3 h 0 3 0

6 PPh3 (10 mol %), Et3N (1.2 equiv), DMF, 110 �C, 1 h 20 19 0

a Conditions: Pd(OAc)2 (10 mol %) is common.
b Isolated yields.
c Mixture of cis/trans.

6306 S. H. Kim et al. / Tetrahedron Letters 51 (2010) 6305–6309
provided an alkylpalladium intermediate (III). Aromatic C–H acti-
vation3a of (III) to form (V) via the palladacycle (IV) and the follow-
ing base-mediated aerobic oxidation of (V) produced an
indeno[1,2-a]indane 6a. Similar air oxidation of benzylic cyanides
was reported under basic conditions.9 Competitive d-carbon elim-
ination and concomitant decarboxylation of (III) generated methy-
leneindane 7a, as observed many times in similar cases.3a,3b,10

Thus we chose the conditions in entry 5 (Table 1) as the best
ones and carried out the synthesis of poly-substituted naphtha-
lenes 4a–f, and the results are summarized in Table 2. The reac-
tions of 3b–d showed very similar results with that of 3a.
Naphthalenes 4b–d were obtained in moderate yields (65–79%)
along with small amounts of indeno[1,2-a]indane derivatives
6b–c (3–5%). The reaction of 3e produced a somewhat lower yield
of 4e (47%) than other entries. However, the yield of 4e increased
to 61% when the reaction was performed under the conditions of
TBAB/K2CO3/DMF (entry 3 in Table 1). The reaction of 3f afforded
4f (57%) along with a small amount of 4f0 (18%). This compound
must be formed via a base-mediated elimination of HCN from
the corresponding dihydronaphthalene.
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Synthesis of naphtahlenes 4a–f
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e Compound 4e was obtained in 61% under the conditions of entry 3 in Table 1.
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The structure of 4a was unequivocally confirmed by NOE exper-
iments, as shown in Scheme 4. From the NOE data of 4a we could
rule out the possibility for the formation of another plausible naph-
thalene 8, which could be formed from the intermediate (III) via a
C(sp3)–H activation to form the cyclopropane intermediate (VI),
base-mediated ring-opening to dihydronaphthalene (VII), and the
following aerobic oxidation process.3b

In summary, we disclosed the synthesis of poly-substituted
naphthalenes from the modified Baylis–Hillman adducts having
an o-bromophenyl acetonitrile moiety at the secondary position
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via a Pd-catalyzed cascade reaction in reasonable yields. Further
studies on the reaction progress and mechanistic details are
underway.11
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11. In order to get some insights, we ran the reactions with major-3a and minor-3a
separately. The products distributions were somewhat different with each
other, although syn and anti derivatives showed the same reactivity in our
previous synthesis of naphthalenes from OTBS derivatives (Eq. 2 in Scheme
1).3a Thus confirmation of the stereochemistry of starting materials 3 and the
studies on the difference of reactivity are currently underway.
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